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Abstract. In order to characterize networks in the scale-free network class we study the frequency of cycles
of length h that indicate the ordering of network structure and the multiplicity of paths connecting two
nodes. In particular we focus on the scaling of the number of cycles with the system size in off-equilibrium
scale-free networks. We observe that each off-equilibrium network model is characterized by a particular
scaling in general not equal to the scaling found in equilibrium scale-free networks. We claim that this
anomalous scaling can occur in real systems and we report the case of the Internet at the Autonomous
System Level.

PACS. 89.75.-k Complex systems – 89.75.Hc Networks and genealogical trees

1 Introduction

Many systems in nature and society can be described in
terms of networks in which the elements of the system are
represented as nodes and their interaction as links. It has
been found that there is a large class of these networks
that share common properties of the connectivity distri-
bution [1–3]. In fact very different networks have been
found to be scale-free i.e. with a power-law connectivity
distribution P (k) ∼ k−γ . These networks are as different
as the Internet, the scientific citation network or the net-
work of the protein-protein interactions in the cell (which
has a cutoff at large value of k in the connectivity distri-
bution). Modeling the dynamic under which real networks
evolve has been a recent challenge of the statistical me-
chanics community. Networks models can be classified into
equilibrium and off-equilibrium models [3]. Equilibrium
networks are characterized by having a constant number
of nodes (and constant average connectivity) while off-
equilibrium networks evolve under the continuous addition
of new nodes and links. While certainly the connectivity
distribution is responsible for the common properties of
scale-free networks, as the robustness under random dam-
age for example [4], other quantitative measurements are
needed to characterize and distinguish between them. One
direction is certainly to measure the correlations between
the degree of connected nodes. Consequently the average
connectivity knn(k) [5,6] of the nearest neighbor of a node
of degree k and the correlations plots [7,8] have been in-
troduced. Another direction tries to characterize the or-
dering of the network by counting the frequency of cliques
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(triples of fully connected nodes) or of grid-like structures
(evaluating the frequency of rectangular cycles in the net-
work). At this scope it has been introduced the clustering
coefficient c3,i [9] and more recently the grid coefficient
c4,i [10]. The dependence of these coefficients on the con-
nectivity ki of node i give a measure of the modularity
of the network [5,6,11]. Finally some attention has been
addressed to the characterization of the networks in terms
of the subgraphs recurring more frequently. In particular
the ratio between the recurrence of a given subgraph on
a particular real world network and the recurrence of the
same subgraph in a network with the same degree dis-
tribution but randomly rewired has been computed for
different real networks [12]. The subgraphs for which this
ratio is higher than one are called characteristic motifs
of the studied network. In the same spirit of [13] in this
paper we will focus on a particular class of subgraphs:
the cycles. We define a cycle of size h (a h-cycle) as a
closed path of h links that visits each intermediate node
only once. Such subgraphs are of special interest because
they give an indication on the ordering of the networks
and on the multiplicity of paths connecting two nodes of
the network. In particular we will study the anomalous
scaling of the number of cycles with the system size in
off-equilibrium scale-free networks as compared with the
results [14] for equilibrium scale-free networks. The paper
is organized as follows: in Section 2 we give an heuristic
calculus of the scaling of the number of cycles in the BA
network [15,16] (which is the prototype of off-equilibrium
networks models), in Section 3 the scaling of the num-
ber of cycles with the system size is studied numeri-
cally in different off-equilibrium scale-free models, in Sec-
tion 4 we consider the real evolution of the Internet at the



224 The European Physical Journal B

Autonomous System Level, a classical example of scale-
free network [5,6,8,17–19]; finally the conclusions are
given in Section 5.

2 Analytic results

Much work [20] has been done regarding the number of
subgraphs in Erdös and Renyi (ER) random networks [21]
with Poisson degree distribution. On the contrary a recent
work [14] present an analytic estimation of the number of
given subgraphs in scale-free networks. We recall here the
result relevant to our study omitting the proof that can
be found in the cited paper. In maximally random (equi-
librium) scale-free networks with power-law connectivity
distribution P (k) ∼ k−γ and fixed average degree the au-
thors of [14] demonstrate that the number Nh of cycles of
length h scales like a power-law of the system size

Nh(N) ∼ N ξ (1)

with

ξ =




1 for γ ≤ 2
3 − γ for 2 < γ ≤ 3
0 for γ ≥ 3.

(2)

The maximal exponent ξ = 1 is reached when γ ≤ 2 in
which the network is “condensed” and the topology of the
network is dominated by the hub,i.e. the node with maxi-
mal number of connections. We observe here that the ex-
ponent ξ of the scaling (1) of the number of cycles Nh does
not depend on the length h of the cycle and is bounded
by the unitary value, i.e.

ξ ≤ 1. (3)

(On the contrary a simple combinatorial calculation prou-
ves that the maximal number of possible triangles scales
like 〈k〉h if no restrictions to the connectivity distribu-
tion are assumed.) What would be the scaling of Nh in
off-equilibrium scale-free networks? We first try to answer
this question addressing the problem for the prototype of
off-equilibrium networks, the BA [15,16] network.

2.1 Number of cycles in the BA network

The BA model [15,16] was the first and simplest algorithm
generating scale-free networks by an off-equilibrium dy-
namics. In this model, a new node is added to the network
at each time step, and it is connected by a fixed number
of links m to highly connected existing nodes (preferential
attachment). According to this rule, the probability that
at time t a new link will connect the new node with an
existing node i of the network is assumed to be propor-
tional to the degree ki(t) of node i. Multiple links are not
allowed. If a double link occurs it is regarded as a single
link and an additional link is extracted departing from the
new node.

The model can be easily analyzed by a mean field ap-
proximation [15]. By this approach one finds that the aver-
age degree of a node i that entered the network at time ti
increases with time as a power-law

ki(t) = m

√
t

ti
. (4)

A network built in this way displays a power law degree
distribution P (k) ∼ k−γ with γ = 3.

In the case m > 2, the BA scale-free network is a very
compact network, with cycles of any size. As the network
evolves, new cycles are introduced in the network. By def-
inition, new cycles include the newly added node: indeed,
a new h-cycle is formed if the new node is connected to
two nodes already connected by a self-avoiding path of
size h − 2. We indicate with pi,k the probability that the
nodes i, k, attached to the network at time ti, tk, are con-
nected by a link. The rate at which new cycles of length
h are formed is given by the probability pi,kpj,k that the
new node k is linked to two existing nodes i and j times
the probability P h−2

i,j (t) that they are already connected
by a self-avoiding path of size h− 2.

Therefore, we write the following rate equation for the
average number of h-cycles Nh(t)

∂ 〈Nh(t)〉
∂t

=
1
2

t∑
i=1

t∑
j=1

pi,kpj,kP
h−2
ij (t), (5)

where the factor 1
2 takes into account that each pair of

nodes i, j has been counted twice in the sums.
On the other hand, two nodes belong to a h-cycle if

there is a link between them and, besides it, they are con-
nected by a self-avoiding path of length h− 1.

Let P h−1
i,j (t) be the probability that this path exists;

thus, the probability that the link between node i and j
belongs to a h-cycle is given by pi,jP h−1

i,j (t). We obtain the
average number 〈Nh(t)〉 of h-cycles in the system times
2h by summing this quantity over all the nodes i, j in the
network. In fact, each cycle has been counted 2h times,
because there are h nodes in the cycle, and two possible
directions. Therefore, we can write

〈Nh(t)〉 =
1
2h

t∑
i=1

t∑
j=1

pi,jP
h−1
ij (t). (6)

Neglecting the fact that multiple links are not allowed we
can assume in first approximation that at each time the
extraction of the m nodes to which the new node will con-
nect are independent random processes. In this approxi-
mation the probability pi,k that the node k arrived in the
network at time tk will be connected to a node i is given by

pi,k = m
ki(tk)∑
j kj(tk)

. (7)

By replacing equation (4), valid asymptotically in time,
in equation (7), and approximating

∑
j kj(tk) with 2mtk,
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the probability that the node i is attached to node k is
given by

pi,k =
m

2
1√
titk

. (8)

Moreover, the probability that a node k is connected with
nodes i and j is proportional to the probability that i and
j are already connected, i.e.

pi,kpj,k = m
1

2tk
pi,j . (9)

By replacing this result in (5) and by the definition (6),
we obtain

∂ 〈Nh(t)〉
∂t

=
m

2t
(h− 1) 〈Nh−1(t)〉 . (10)

Consequently, the rate at which new cycles of size h are
introduced in the system is proportional to the mean num-
ber of cycles of size h− 1.

Equation (10) has a recursive structure that allows its
integration without any detailed information about the
probabilities P hi,j(t). In fact, the rate at which new cycles
of length h are formed can be expressed only in terms of
the number of cycles of minimal size (i.e. h = 3),

∂h−3 〈Nh(ζ)〉
∂ζh−3

= (h− 1)! 〈N3(ζ)〉 (11)

with ζ = m
2 log(t) and h > 3. The number of triangular

cycles 〈N3(ζ)〉 can be computed directly, since the trian-
gular cycles are increasing in time following (5),

∂ 〈N3(t)〉
∂t

=
1
2

t∑
i=1

t∑
j=1

pi,kpj,kpi,j . (12)

We compute 〈N3(t)〉 using for pi,j the form given by equa-
tion (8), approximating sums by integrals we write the rate
equation in the form

∂ 〈N3(t)〉
∂t

=
1
2

(m
2

)3
∫ t

1

dti

∫ t

1

dtj
1
ti

1
tj

1
t

=
1
2

(m
2

)3 1
t
[log(t)]2. (13)

Integrating (13) we find, in agreement with [22,23],

〈N3(t)〉 =
1
3!

[m
2

log(t)
]3

. (14)

Using equation (14) in equation (11), we compute the
number of cycles of size h, 〈Nh(t)〉 and we find

〈Nh(t)〉 =
[m

2
log(t)

]h
(1/h+O(ζ−1)).

∼
[m

2
log(t)

]h
(15)

with t equal to the total number of nodes N .
As a final comment we observe that in [24] it is derived

for the rigorous mathematical version of the BA model

(the Linearized Chord Diagram –LCD– model) the same
asymptotic scaling of (15) by other means. A more careful
analysis concern the result regarding the number of trian-
gles in the LCD model found in [24]. The author of [24]
in fact obtain a formula which differ from equation (14)
by a factor (m − 1)(m + 1)/m2. While this correction to
equation (14) capture some effect of the correlations be-
tween the way the links are connected, not included in the
shown derivation, we will see in the next chapter (when
this heuristic results will be compared with simulations)
that both formula (14) and (15) have to be considered
as asymptotic indications of the scaling of the number of
triangles and h-cycles present in the network and not as
exact predictive calculations of these cycles. In this sense
the presented results and the results of [24,25] completely
agree.

3 Numerical results for some examples
of off-equilibrium scale-free networks

3.1 Direct measurement of Nh for h = 3, 4, 5

The expression for the scaling of Nh(t) with the system
size t in a BA network does not suggest a practical way to
measureNh(t). To this purpose, one has to study the sym-
metrical adjacency matrix a of the network, whose generic
element aij is defined by aij = 1 if i and j are connected
and aij = 0 if i and j are not connected. Knowing this
matrix, one directly measures the number of paths start-
ing from a node i and returning on it after h steps that
visit intermediate nodes only once (in fact the total num-
ber of possible paths of size h going from node i to node j
are given by the matrix element (ah)i,j [20]). According to
this argument, the term Nh(t) has a dominating term of
the type

∑
i(a

h)i,i/(2h) and sub-dominant terms exclud-
ing all trivial contributions coming from paths intersecting
on themselves. Let us assume that the network does not
contains self cycles, i.e. aii = 0 for all i of the network. In
this case, for h = 3 we simply have

N3 =
1
6

∑
i

(a3)ii. (16)

For h = 4 we have

N4 =
1
8

[∑
i

(a4)ii − 2
∑
i

(a2)ii(a2)ii +
∑
i

(a2)ii

]
. (17)

To prove equation (17), we observe that in order to find
N4 it is necessary to subtract from a4

i,i all the paths that,
going through nodes i1, i2, i3, either have i2 = i (∀i1, i3,
either have i3 = i1 (with the condition i2 �= i). In Figure 1
we give a graphical representation of the cycles that have
to be excluded from the calculation of N4. From similar
considerations it is straightforward for find for N5,

N5 =
1
10

[∑
i

(a5)ii − 5
∑
i

(a2)ii(a3)ii + 5
∑
i

(a3)ii

]
.

(18)



226 The European Physical Journal B

Fig. 1. Calculation of the numbers of cycles of size 4. From
all the paths going from i back to i through nodes i1, i2, i3 we
should remove all the paths that have i2 = i (∀i1, i3) and then
all the paths that have i3 = i1 (but do not have also i2 = i
because they have already been counted by the previous term).

Using relations (16, 17, 18), we can directly measure
Nh(t) for h = 3, 4, 5 for any growing network.

3.2 The BA model

First off all we measure number of cycles up to size 5 in
the BA scale-free network model and we compare our re-
sults with the analytic predictions of the previous chapter.
The average results obtained from 50 realizations of a BA
network of size up to N = 104 nodes are reported in Fig-
ure 2. It is shown there that the scaling of Nh(N) as the
power-law of the logarithm of the system size

Nh(N) ∼ (m log(N))ψ(h) (19)

is directly verifiable. Nevertheless the exponent ψ(h) of
the best fit of the numerical curve with the formula (19)
differs somewhat from the theoretical expected value equa-
tion (15) being ψ(h) slightly less than h, i.e. ψ(h) < h for
h up to 5 (see inset of Fig. 2). We believe this is due
for the fact that the asymptotic limit in which is valid
equation (15) is reached very slowly by the system. For
an equilibrium network with γ = 3 the number of cycles
goes like equation (1) with ξ = 0. Consequently the scal-
ing (19) can be viewed as a logarithmic correction to the
power-law scaling equation (1) with ξ = 0.

3.3 The bosonic network

We considered the bosonic network (BN) [26] where each
node i is assigned an innate quality, represented by a
random ‘energy’ εi drawn from the probability distribu-
tion p(εi). The attractiveness of each node i is then deter-
mined jointly by its connectivity ki and its energy εi. In
particular, the probability that node i acquires a link at
time t is given by

Πi =
e−βεiki(t)∑
j e

−βεjkj(t)
, (20)

i.e. low energy and high degree nodes are more likely to
acquire new links. The parameter β = 1/T in Πi tunes the

Fig. 2. Scaling of the number of cycles up to size 5 in a BA
network as a function of the system size. Data are shown for a
network with m = 2 and a system size up to N = 104. In the
inset we report the value of the exponent ψ(h) of the best fit
following the predicated scaling (22).

relevance of the quality with respect to the degree in the
probability of acquisition of new links. Indeed, for T → ∞
the probability Πi does not depend any more on the en-
ergy εi and the BN model reduces to the Barabási-Albert
(BA) model. On the other hand, in the limit T → 0 only
the lowest energy node has non zero probability to ac-
quire new links. In reference [26] it has been shown that
the connectivity distribution in this network model can
be mapped on the occupation number in a Bose gas. Ac-
cording to this analogy, one would expect a corresponding
phase transition in the topology of the network at some
temperature value Tc. In fact, for energy distributions such
that (p(ε) → 0 for ε → 0), one observes a critical tem-
perature Tc. For T > Tc the system is in the “fit-get-
rich”(FGR) phase, where nodes with lower energy acquire
links at a higher rate that higher energy nodes and the
connectivity distribution follows a power-law P (k) ∼ k−γ
with 2 < γ ≤ 3, while for T < Tc γ ∼ 2 and a “Bose-
Einstein condensate”(BEC) or “winner-takes-all” phase
emerges, where a single node grabs a finite fraction of all
the links. We simulated this model assuming

p(ε) = (θ + 1)εθ and ε ∈ (0, 1) (21)

where θ = 0.5. By tuning T there is a changement in the
behavior of Nh in the bosonic network from a scaling of
the type

Nh(N) ∼ [log(N)]ψ(h) (22)

demonstrated exact in the β = 0 limit (for the BA network
model) [13], to a scaling of the type

Nh(N) ∼ N ξ(h) (23)

valid a low temperature limit. In reference [13] we claimed
that the behavior change right at the Bose-Einstein con-
densation temperature Tc. A careful analysis of the tran-
sition shows indeed that the transition is not so sharp at
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Fig. 3. We report Nh(N) in the three regions of the phase
space of the bosonic network with m = 2 and θ = 0.5. The
chosen points are at β = 0.5 for the FGR1 phase; at β = 1.1
for the FGR2 and at β = 2.5 for the BEC phase. The data
shown in figure are averaged over 50 runs.

.

Fig. 4. The exponents ξ(h) that better approximate the be-
havior of Nh(N) for the bosonic network in the phases FGR2
and BEC are plotted as a function of the inverse temperature β.

Tc but rather smooth. In Figure 3 we show a selection of
an extensive study of the scaling of Nh(N) for a network
with m = 2 and θ = 0.5 Tc = 0.58(βc = 1.7) [26]. The
data are collected for network with up to 104 nodes and
averaged over 50 runs. Analyzing numerically the results
we could distinguish three phases: a “high temperature”
or “Fit-Get Rich”(FGR1) phase without the condensate
and with a scaling of Nh(N) better approximated by (22),
a “low temperature” or “Bose-Einstein condensate”(BEC)
phase where the network is condensate and Nh(N) scales
as (23) and finally an intermediate phase where the net-
work is not yet condensate but for large N the behavior
of Nh(N) is better approximated by the power-law equa-
tion (23) (FGR2 phase). In Figure 4 we report the values
of the exponents ξ(h) that better fit the data in the FGR2
and BEC phases. We observe here that in the phase FGR2
one should expect ξ(h) → 0 at the transition temperature,
nevertheless because we are dealing with numerical data
in a finite range of system sizes, as we approach the tran-
sition we observe that the range in which the power-law
fit is statistically reasonable is decreasing. Consequently
one finds a power-law exponent ξ(h) that remains signif-

 

Fig. 5. Scaling of the number of cycles Nh of length h with
the system size N . Triangles, rectangles and pentagons asymp-
totically in N increase like a power-law of the system size
with exponents ξ(h) dependent on the length h of the cycles
(ξ(3) = 0.59 ± 0.02, ξ(4) = 0.86 ± 0.02, ξ(5) = 1.10 ± 0.02).

icantly different from zero since one actually measure the
best power-law fit in smaller and smaller region of large
system sizes. This confirms the difficulty in finding the
exact transition temperature for the changing behavior
of Nh(N) since simulations with very large system sizes
would be required. On the contrary in the BEC phase
the power-law exponents that we have measured describe
the scaling of Nh for at least three order of magnitude.
A relevant remark is that in the phases FGR2 and BEC
the exponent ξ(h) varies significantly with h and is not
bounded by 1. Consequently the scaling of the number of
cycles in a bosonic network cannot be explained in terms
of the prediction (1) for equilibrium scale-free networks.

3.4 The fitness model

The fitness model [27] has been considered a first approx-
imation of a model for the Internet structure [5,6]. It is a
growing network model in which at each time a new node
arrives in the network and it is connected by m links to
the rest of it. Each node has a fitness ηi extracted ran-
domly from a uniform distribution between zero and one
by which it attracts new links. The probability for each
node to acquire a new link is given by

Πi =
ηiki(t)∑
j ηjkj(t)

. (24)

The resulting network built on a procedure “Good gets
richer” is a power-law network with an exponent given by
γ = 2.255. The fitness network has been found also [5,6]
to share not trivial correlations and shows a nontrivial
scaling of the clustering coefficient c3(k) and average con-
nectivity of the nearest neighbor knn(k) with the connec-
tivity k of the considered node.

In Figure 5 we show the scaling of Nh as a function
of the system size for the fitness model with m = 2. For
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large N the scaling follows a power-law with exponents
ξ(3) = 0.59± 0.02, ξ(4) = 0.86± 0.02, ξ(5) = 1.10± 0.02.
Also in this case the equilibrium theory equation (1) fails
in describing the cycles structure of this off-equilibrium
network.

3.5 Aging nodes network

We have measured the scaling of Nh(t) with the system
size t also for a growing network with aging nodes (AN)
introduced in [28,29]. The model has been motivated by
the observation that in many real networks, e.g. the scien-
tific citations network, old nodes are less cited than recent
ones. In the goal of representing this feature, the probabil-
ity Πi to attach a link to a node i arrived in the network
at time ti is modified to be

Πi =
(t− ti)−αki(t)∑
j(t− tj)−αkj(t)

(25)

where α is an external parameter. As in the BA model,
a new node is connected to m existing nodes. The result-
ing structure of such a network strongly depends on the
constant α. For α < 1, the degree distribution is a power
law P (k) ∼ k−γ with an exponent monotonically increas-
ing from γ = 2 in the limit α → −∞ to γ → ∞ in the
limit α→ 1: on the other hand, for α > 1 no power-law is
observed in the degree distribution. Therefore, this model
reproduces a scale-free network only in the region α > 1.

Moreover, as observed in [28,29], in the limit α→ −∞
the oldest node is connected to an increasing fraction of all
the links, reminding the “condensation” observed in the
bosonic network. To take into account this phenomenon,
we introduce a value α∗ such that for α < α∗ the fraction
of links attached to the most connected node exceeds a
finite threshold F . We expect the scaling of Nh(t) to be
different in the three regions α > 1, α ∈ (α∗, 1) and α <
α∗. We measured the total fraction of links kmax/(mN)
attached to the oldest node in a network with m = 2 and
t = 104 nodes. The threshold has been fixed at F = 0.1,
in order to distinguish the ‘condensate’ phase from the
simple scale-free phase. The value for α∗ was found to be
α∗ = −1. We then measured the number of cycles of size
h = 3, 4, 5 for networks made of up to 104 nodes in the
three ranges of value of α. We have observed that, for α >
1, the number of cycles of size h scales linearly with t (at
least for h = 3, 4, 5). In the inset (a) of Figure 6 we report
the data for α = 1.5. On the contrary, for α ∈ (−α∗, 1) we
measured the scaling

Nh(N) ∼ [log(N)]ψ(h) (26)

with ψ(h) a monotonic function of h. In inset (b) of Fig-
ure 6, data for α = 0.5 are reported. Finally, in the region
α < α∗ = −1, Nh(t) becomes proportional to a power-law
of the system size and the fit is valid for all values of N
and not only asymptotically for large N , as it is shown in
inset (c) of Figure 6, referring to the case α = −5.

Fig. 6. The order parameter kmax/(mN) for a network with
aging of the nodes, size N = 104 and m = 2. We distinguish
between three region of the phase space:α > 1, α ∈ (−1, 1) and
α < −1. In the insets we report the typical behavior of Nh(t)
as a function of t for h = 3, 4, 5 in the three regions.

3.6 Growth and deactivation model

As a final example of off-equilibrium scale-free network
we consider the growth and deactivation model [30]. Also
this model is motivated by the finding that in the scien-
tific citation network recent papers are more likely acquire
new links than older ones. In the network nodes are dis-
tinguished between active nodes (that are able to acquire
new links) and inactive nodes (that no not acquire new
links anymore). The initial condition is a fully connected
graph of m active nodes (ki = m−1 ∀i = 0, . . .m−1). At
each time a new node i is added to the network and con-
nected to the m active nodes of the network. Consequently
the initial connectivity of each node i is ki = m and each
active node node j increases its connectivity by one, i.e.
kj → kj+1. When the node i is linked to the network it is
activated while one of the active nodes is deactivated. The
probability Πj that the node j is deactivated is given by

Πj =
K − 1
kj

, (27)

where the normalization factor is defined as K − 1 =(∑
l∈A

1
kl

)−1

. The summation runs over the set A of the
currently active nodes. The network generated in this way
is a scale-free network with γ = 3 [30]. We simulate the
network with m = 10 and we report the scaling of the
number of the cycles with the system size in Figure 7. We
observe that the number of cycles Nh(N) grows linearly
with N for all h up to length h = 5 (the power-law fit to
the data give the exponents ξ(h) = 1.00± 0.05). Thus for
this model the exponents ξ(h) are equal 1 for h = 3, 4, 5
and ξ(h) are not dependent on h. Nevertheless the values
of ξ(h) are one more time not predicted by the equilibrium
theory (1) which gives ξ(h) = 0 for γ = 3.
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Fig. 7. Scaling of the number of cycles with the network size
N in the growth and deactivation model with m = 10. The
scaling of the cycles up to length h = 5 scales linearly with
the system size at sufficiently large values of N . We indicate
by solid lines the linear fit to the simulation data.

3.7 Comment

The equilibrium networks considered in [14] are all the
networks with given connectivity distribution. Thus they
include also the special network configurations generated
by off-equilibrium scale-free network models. As a random
number do not generally coincide with its average value we
have found in this paper that the off-equilibrium networks
present a scaling of the number of cycles with the system
size different from the average scaling of equilibrium net-
works described in [14] by equation (1). This result is not
surprising but it might be interesting because real evolv-
ing scale-free networks do not necessarily investigate all
the space of equilibrium scale-free networks with their dy-
namics. This seems to be the case of the evolution of the
protein interaction network [31] in which some subgraphs
are preserved at high degree during evolution. Another
case of a real evolving scale-free network for which data
are available is represented by the Internet at the Au-
tonomous System Level which is the object of the next
section.

4 The real case of the Internet
at the Autonomous System Level

The Internet is an example of a real undirected scale-free
network that grows with time and whose historical evo-
lution has been recorded. The data of the Internet at the
Autonomous System Level are collected by the Univer-
sity of Oregon Route Views Project and made available
by the NLANR (National Laboratory of Applied Net-
work Reasearch). The subset we used in this manuscript
are mirrored at COSIN webpage http://www.cosin.org.
We considered 13 snapshot of the Internet network at the
AS level at different times starting from November ’97
(with a total number of nodes N = 3015) end ending on

Fig. 8. Scaling of the number of cycles with the network size
N in the growth and deactivation model with m = 10. The
scaling of the cycles up to length h = 5 scales linearly with
the system size at sufficiently large values of N .We indicate by
solid lines the linear fit to the simulation data.

January ’01 (with N = 9048). During this time the con-
nectivity distribution follows a power-law with a nearly
constant exponent γ � 2.22(1) and a almost constant av-
erage connectivity 〈k〉 � 3.5. Consequently it is mean-
ingful to measure how the number of cycles up to size 5
present in such network evolve in time. Cycles in the In-
ternet are important because they allow flexibility of the
protocols by which the packets are sent to destination. In
fact, in the presence of cycles for any given packet the
routers can choose in between different paths, trying to
minimize congestion. In the absence of cycles the protocols
would be fixed and there will be no room for the routers
to avoid congestion. In Figure 8 we show the scaling of
the number of triangles, quadrilaterals and pentagons Nh
with h = 3, 4, 5 with the system size N given by the num-
ber of nodes present in the Internet at the AS level. We
observe a behavior that can be described by the following
power-law

Nh(N) ∼ N ξ(h) (28)

with exponents ξ(3) = 1.45± 0.07, ξ(4) = 2.07± 0.01 and
ξ(5) = 2.45 ± 0.01 bigger than 1 and strongly dependent
on h, i.e. not constant on h and bound by 1 as the the-
ory equation (1) for equilibrium scale-free networks would
suggest.

Consequently we can state that cycles up to size 5 are
more frequent in the Internet at the AS level than in a
random network with the same connectivity distribution
and indeed could play the role of characteristics motifs of
the Internet.

In reference [32] we compare this behavior with the be-
havior of different Internet models, mainly the models for-
mulated in the statistical physicist community (for a com-
plete view of all the Internet models see [19]) the fitness
model [27], the Generalized Network Growth model [33]
and the bosonic network [26] with same average connec-
tivity. We observe there that while these models capture
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qualitatively the features of Internet they quantitatively
fails in explaining the high value of the exponents ξ(h) and
the high density of cycles in the Internet. Further research
should investigate if self-organizing dynamical properties
can be sufficient to justify the multiplicity of cycles in the
Internet or if it is necessary to include some indication of
an external design that favors cycles in the evolution of
such system.

5 Conclusions

In conclusion we have presented a study of the frequency
of cycles in off-equilibrium scale-free networks. We have
reported the analytic result obtained for the scaling of
the number of cycles with the system size for the BA
model which represent the prototype of all off-equilibrium
networks. Subsequently we have illustrated an extensive
numerical study of the number of cycles in different off-
equilibrium network models. We were able to show that as
these networks grow, the number of cycles follows a gen-
eral scaling different from the one predicted for equilib-
rium scale-free networks with same connectivity distribu-
tion. We made the hypothesis that this different behavior
of the number of cycles Nh in off-equilibrium scale-free
networks can be relevant in order to describe the cycle
structure of real networks. In order to prove this hypothe-
sis we have measured the number of cycles in the Internet
at the Autonomous System Level and we have observed
the anomalous exponents which describe the growth of the
number of cycles present in it. Future research will address
the two still open problems of the analytical calculation
of the number of cycles in off-equilibrium networks and
of the formulation of a model that would quantitatively
reproduce the cycle structure of the Internet at the Au-
tonomous System level.

The author is grateful to Uri Alon, Guido Caldarelli, Andrea
Capocci, Shalev Itzkovitz and Alessandro Vespignani for useful
comments and discussions.
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